@MENTEK Testing Equipment Co., Ltd. All rights reserved.
Otthon

Akkumulátor flip tesztelő berendezés lítium tumble inverziós minőségbiztosítási tesztgép

Akkumulátor flip tesztelő berendezés lítium tumble inverziós minőségbiztosítási tesztgép

Az akkumulátorcsomag flip tesztelő berendezése szimulálja a többtengelyes forgást és inverziót, hogy értékelje a lítium akkumulátor integritását extrém mozgás mellett. Állítható sebességgel, valós idejű ütközésfigyeléssel és az UL 2580/IEC 62660 szabványnak való megfeleléssel igazolja az elektromos járművek, hordozható eszközök és ipari energiatároló rendszerek tartósságát dinamikus környezetben.

Akkumulátor flip tesztelő berendezés lítium tumble inverziós minőségbiztosítási tesztgép
Leírás
termékleírás

Vonatkozó szabványos vizsgálati követelmények
1.1 A vizsgált tárgy egy akkumulátor vagy rendszer.

1.2 A vizsgált tárgy 360°-ban forog 6°/s sebességgel, majd 90°-os lépésekben forog. 1 órán át tartjuk minden 90°-os lépésben. Álljon meg, amikor 360°-ban elfordul, és figyelje meg 2 órán keresztül.

1.3 A vizsgált tárgy először 360°-kal forog az Y tengely körül 6°/s sebességgel, majd 90°-os lépésekben forog. 1 órán át tartjuk minden 90°-os lépésben. Álljon meg, amikor 360°-ban elfordul, és figyelje meg 2 órán keresztül.

1.4 Követelmények: Az akkumulátorban vagy a rendszerben nem lehetnek olyan jelenségek, mint szivárgás, héjtörés, tűz vagy robbanás. És a kapcsolatnak megbízhatónak kell lennie, és a szerkezetnek sértetlennek kell lennie. A vizsgálat után a szigetelési ellenállás értéke nem lehet kevesebb, mint 100Ω/V.
 


Fő paraméterek

A berendezés neve Tápellátás akkumulátor flip teszt eszköz
Modell MBS-FZ31467.3
Forgási szög 0 ~ 360 °
Forgási sebesség 1 ° / s ~ 12 ° / s állítható
Forgásirány X tengely, Y tengely, automatikus átalakítás
Maximális vizsgálati terület W2000 * H1000 * D3000mm
Legnagyobb vizsgálati tömeg 1000kg
A berendezés külső méretei W4200 * H2000 * D2000mm
Flip lemez mérete W2000 * H100 * D3000mm
A berendezés súlya Körülbelül 5 tonna
Ellenőrzési módszer Közeli finomhangolás + nagy hatótávolságú érintőképernyős PLC vezérlés + számítógépes vezérlés
Tápegység AC380V 5,5kW

Szerkezeti folyamat
1. A vállalat hardverfelszerelése:
1 importált német lézergép; 1 db Amada AIRS - 255NT lyukasztógép Japánból; több mint 10 német szén-dioxid hegesztőgép és argon ívhegesztő gép. Az Autodesk Inventor 3D rajzszoftvert használjuk a 3D lemezbontó rajzokhoz és a virtuális összeszerelés tervezéséhez.

2. A külső héj kiváló minőségű horganyzott acéllemezekből készül, és elektrosztatikus porszórással és sütőfestékkel van ellátva.

3. A belső kamra importált SUS#304 rozsdamentes acélból készül, és az argon íves teljes behatolású hegesztési eljárást alkalmazza, hogy megakadályozza a magas hőmérsékletű és magas páratartalmú levegő szivárgását és behatolását a kamrába. A belső kamra bélésének lekerekített sarokkialakítása jobban elvezeti a kondenzátumvizet az oldalfalakon. 
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Hűtőrendszer technológia
1. 3D Hűtőrendszer kezelési rajza.

2. A hűtőrendszer frekvenciakonverziós vezérlési technológiája: A frekvenciaváltós hűtőrendszerben még akkor is, ha az 50 Hz-es tápegység frekvenciája rögzített, a frekvenciaváltón keresztül változtatható, ezáltal beállíthatja a kompresszor forgási sebességét, és a hűtési teljesítmény folyamatosan változik. Ez biztosítja, hogy a kompresszor üzemi terhelése megegyezzen a tesztkamrában lévő tényleges terheléssel (azaz amikor a teszttest belsejében a hőmérséklet emelkedik, a kompresszor frekvenciája növekszik a hűtési teljesítmény növelése érdekében; fordítva, amikor a hőmérséklet csökken, a kompresszor frekvenciája csökken a hűtési teljesítmény csökkentése érdekében). Ez nagymértékben megtakarítja a felesleges veszteségeket működés közben, és eléri az energiatakarékosság célját. A tesztkamra működésének kezdetén a kompresszor frekvenciája is növelhető a hűtőrendszer kapacitásának növelése és a gyors hűtés céljának elérése érdekében. A tesztkamra frekvenciaváltós hűtőrendszert alkalmaz, amely pontosan szabályozza a kamra belsejében lévő hőmérsékletet, kis hőmérséklet-ingadozások mellett állandóan tartja a kamra belsejében lévő hőmérsékletet. Ugyanakkor biztosítja a hűtőrendszer stabil szívó- és kisülési nyomását is, stabilabbá és megbízhatóbbá téve a kompresszor működését. Elektronikus expanziós áramlási szervo.
Hűtőrendszer-technológia és egyéb energiatakarékos technológiák
1. A PID + PWM elvén alapuló VRF technológiát alkalmaznak (az elektronikus expanziós szelep szabályozza a hűtőközeg áramlását a hőenergia munkakörülményeinek megfelelően). A PID + PWM (hűtőközeg-áramlásszabályozás) elvén alapuló VRF technológia energiatakarékos működést tesz lehetővé alacsony hőmérsékleten (az elektronikus expanziós szelep a hűtőközeg áramlási szervóját a hőenergia munkakörülményeinek megfelelően szabályozza). Alacsony hőmérsékletű üzemi állapotban a fűtés nem vesz részt a műveletben. A hűtőközeg áramlásának és irányának PID + PWM-en keresztüli beállításával, valamint a hűtővezeték, a hideg bypass csővezeték és a forró bypass csővezeték háromirányú áramlásának szabályozásával a munkakamra hőmérséklete automatikusan állandóan tartható. Ily módon alacsony hőmérsékletű munkakörülmények között a munkakamra hőmérséklete automatikusan stabilizálható, és az energiafogyasztás 30% -kal csökkenthető. Ez a technológia a dán Dan-foss cég ETS rendszerű elektronikus expanziós szelepén alapul, és alkalmazható a hűtési kapacitás beállítására a hűtési kapacitás különböző követelményeinek megfelelően. Vagyis képes megvalósítani a kompresszor hűtési kapacitásának beállítását, ha a különböző hűtési sebesség követelményei teljesülnek.

2. Két kompresszorkészlet (nagy és kicsi) csoportosított kialakításának technológiája automatikusan elindulhat és leállhat a terhelés munkakörülményeinek megfelelően (nagy sorozatú kialakítás). A hűtőegység bináris kaszkád hűtőrendszerrel van konfigurálva, amely félhermetikus kompresszorokból és teljesen hermetikus egyfokozatú hűtőrendszerekből áll. A konfiguráció célja a különböző kompresszoregységek intelligens indítása a kamrában lévő terhelési munkakörülményeknek és a hűtési sebességre vonatkozó követelményeknek megfelelően, hogy a kamrában lévő hűtési kapacitás munkakörülményei és a kompresszor kimeneti teljesítménye között a lehető legjobban illeszkedjen. Ily módon a kompresszor a legjobb üzemi állapottartományban működhet, ami meghosszabbíthatja a kompresszor élettartamát. Ennél is fontosabb, hogy az egyetlen nagy készlet hagyományos kialakításához képest az energiatakarékos hatás nagyon nyilvánvaló, és elérheti a 30% -ot (együttműködve a VRF technológiával rövid ideig tartó állandó hőmérséklet-szabályozás során).
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Hűtőkör-technológia

Az elektromos alkatrészeket a Technológiai Osztály által kiadott áramelosztó szerelvény rajzai szerint kell felszerelni az áramelosztási elrendezés során.

Nemzetközileg elismert márkákat választanak ki: Omron, Sch-neider és német Phoenix sorkapcsok.

A vezetékkódokat egyértelműen meg kell jelölni. A vezetékek minőségének biztosítása érdekében egy régi hazai márkát (Pearl River Cable) kell választani. A vezérlőáramkör esetében a kiválasztott vezeték minimális mérete 0,75 négyzetmilliméteres RV puha rézhuzal. Minden fő terhelésnél, például a motorkompresszor esetében a huzalátmérőt az EC-vezetékvályúban lévő huzalozásra vonatkozó biztonsági áramszabványnak megfelelően kell megválasztani.
A kompresszor sorkapocsdobozának kábelnyílásait tömítőanyaggal kell kezelni, hogy megakadályozzák a sorkapocsdoboz kapcsainak rövidzárlatát a fagy miatt.

A kapcsok összes rögzítőcsavarját a szabványos rögzítési nyomatékkal kell meghúzni a megbízható rögzítés és az olyan lehetséges veszélyek elkerülése érdekében, mint a meglazulás és az ívképződés.
Hűtési sorozat folyamata
1. Szabványosítás

1.1 A csővezeték-folyamat szabványosítása és a kiváló minőségű acélcsövek hegesztése; A csővezetékek elrendezését a szabványoknak megfelelően kell elvégezni a gépmodell-rendszer stabil és megbízható működésének biztosítása érdekében.

1.2 Az acélcsöveket egy darabban hajlítja egy importált olasz csőhajlító, ami nagymértékben csökkenti a hegesztési pontok számát és a hegesztés során keletkező belső csőoxidokat, és javítja a rendszer megbízhatóságát!
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
2. Cső ütéscsillapítás és támogatás

2.1 A MENTEK szigorú követelményeket támaszt a hűtő rézcsövek ütéselnyelésével és alátámasztásával szemben. A csövek lengéscsillapítási helyzetét teljes mértékben figyelembe véve a hűtőcsövekhez kör alakú ívhajlításokat adnak, és speciális nejlon rögzítő bilincseket használnak a telepítéshez. Ezzel elkerülhető a körkörös rezgés és hőmérséklet-változások okozta csődeformáció és szivárgás, és javítja a teljes hűtőrendszer megbízhatóságát.

2.2 Oxidációmentes hegesztési folyamat Mint köztudott, a hűtőrendszer csöveinek tisztasága közvetlenül összefügg a hűtőrendszer hatékonyságával és élettartamával. A MENTEK szabványosított gáztöltésű hegesztési műveletet alkalmaz, hogy elkerülje a hegesztés során a csövek belsejében keletkező nagy mennyiségű oxidszennyeződést.


Vállalati profil



Minősítések


Szállítás az ügyfél gyárába
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Advanced M Series 3c Vibration Testing System for Electronics Test Device
Partnereink



Csomagolás és szállítás